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Quantum Chromodynamics QCD
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Jets (p. 4)

Introduction

Background Knowledge
Jets from scattering of partons

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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Jet cross section: data and theory agree over many orders of magnitude ⇔
probe of underlying interaction

!"!

!"#

$"!

$"#

%"!

&' (

)*+,-./0*1-21/////////////////
3
41
1/
56
*7
8+
% 9

:;<=><=/<-??4@-.4,A-2/5%!!B9
4.CA)D!B$!"!#EF)$/GH*I>?4,J

:K6/74?L*
M4,,A+*/N<K

O*+LI?*,/@4.P-21

-+,*,/@4.P-21

Perturbative QCD Lattice QCD

• Calculations:
‣ hard processes (large m, p, Q2) ⇒ perturbative QCD 
‣ everything else ⇒ Lattice QCD, effective field theories, AdS/CFT?

Impressive examples but there 
is much about the strongly 
interacting world we do not 
understand



LQCD = q̄(iγµ∂µ −m)q − g(q̄γµTaq)Aa
µ − 1

4Ga
µνGµν

a

New Frontier:  “Gluonic” Structure of Matter

3

QCD is the “nearly perfect” fundamental theory of the strong 
interactions          F. Wilczek, hep-ph/9907340

• “Emergent” Phenomena not evident from Lagrangian
‣ Asymptotic Freedom
‣ Confinement 
‣ Phases of QCD (T > 0 , µB > 0)



LQCD = q̄(iγµ∂µ −m)q − g(q̄γµTaq)Aa
µ − 1

4Ga
µνGµν

a

New Frontier:  “Gluonic” Structure of Matter
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• Gluons
‣ Self-interacting force carriers
‣ Dominate structure of  QCD vacuum

G. Schierholz
Action density in 3q system (lattice)

Action (~energy) 
density fluctuations of 
gluon-fields in QCD 
vacuum  (Derek 
Leinweber)
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New Frontier:  “Gluonic” Structure of Matter
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• Gluons
‣ Self-interacting force carriers
‣ Dominate structure of  QCD vacuum
‣ Responsible for >94% if visible mass 

in universe
- Quenched QCD explains mass 

spectrum to ± 10%

‣ Determine essential features of QCD 

Despite this dominance, the 
properties of gluons in matter 
remain largely unexplored

February 2, 2008 3:19 WSPC - Proceedings Trim Size: 9in x 6in CDRobertsJLab
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effect of gluon cloud

Rapid acquisition of mass is

Fig. 1. Dressed-quark mass function, M(p): solid curves – DSE results, obtained as
explained in Refs. [5,6], “data” – numerical simulations of unquenched lattice-QCD
[8]. In this figure one observes the current-quark of perturbative QCD evolving into a
constituent-quark as its momentum becomes smaller. The constituent-quark mass arises
from a cloud of low-momentum gluons attaching themselves to the current-quark. This is
dynamical chiral symmetry breaking: an essentially nonperturbative effect that generates
a quark mass from nothing; viz., it occurs even in the chiral limit.

Since a weak coupling expansion of the DSEs generates every diagram in
perturbation theory, it is straightforward to ensure that model-dependent
assumptions are restricted to infrared momenta. One can therefore turn a
comparison of DSE predictions with data into a probe of the long-range
interaction between light-quarks in QCD; namely, a unique means of ex-
ploring light-quark confinement. In large part this study is the same as
drawing a map of the infrared behaviour of the QCD β-function. It is a
fact too often ignored that the potential between infinitely heavy quarks
measured in numerical simulations of quenched-QCD – the static potential
– is not related in any known way to the confinement of light-quarks.

2. Gap equation

Since the gap equation is so fundamental to understanding hadron physics
we reproduce it here:

S(p)−1 = Z2 (iγ · p + mbm) + Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµS(q)Γa

ν(q, p), (1)

where
∫ Λ

q
represents a Poincaré invariant regularisation of the integral, with

Λ the regularisation mass-scale [4], Dµν is the dressed-gluon propagator,
Γν is the dressed-quark-gluon vertex, and mbm is the quark’s Λ-dependent

Bhagwat et al., nucl-th/0710.2059

Chiral Pertubation Theory
In chiral SU(3) limit:
Mp = 880 MeV 
Meißner, hep-ph/0501009

Sum Rules & Trace Anomaly
Quark kinetic + potential 
energy = only 1/3 of Mp
J. Ji, PRL 73, 1071



Hadron-Hadron

• Test QCD
• Probe/Target interaction 

directly via gluons 
• lacks the direct access to 

partons kinematics
• probe has complex structure

p

p/A

How to Study Gluons in Matter ?
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Both are complementary and provide excellent information on 
properties of gluons in the nuclear wave functions
Precision measurements ⇒ ep, eA

Electron-Hadron (DIS)

• Explore QCD & Hadron 
Structure

• Indirect access to glue
• High precision & access to 

partonic kinematics
• probe point-like

p/A
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Deep Inelastic Scattering (DIS)
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d2σ ep→eX

dxdQ2 =
4παe.m.
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Resolution power (“Virtuality”):

p fraction of struck quark

Inelasticity:

quark+anti-quark
momentum distributions

gluon momentum 
distribution



Quark and Gluon Distributions
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Structure functions allows us to extract the quark q(x,Q2) and 
gluon g(x,Q2) distributions. 
In LO: Probability to find parton with x, Q2 in proton
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Quark and Gluon Distributions
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Structure functions allows us to extract the quark q(x,Q2) and 
gluon g(x,Q2) distributions. 
In LO: Probability to find parton with x, Q2 in proton



Quark and Gluon Distributions
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Structure functions allows us to extract the quark q(x,Q2) and 
gluon g(x,Q2) distributions. 
In LO: Probability to find parton with x, Q2 in proton

Proton is almost 
entirely glue by x<0.1 
(for Q2 = 10 GeV2)



Issues with our Current Understanding
Linear DGLAP evolution scheme
• Weird behavior of xG and FL from 

HERA at small x and Q2 

• G(x,Q2) < Qsea(x,Q2) ?

• Unexpectedly large diffractive 
cross-section

• built in high  energy “catastrophe”
- xG rapid rise violates unitary bound

Linear BFKL Evolution 
• Density along with σ grows as a 

power of energy: N ~ sΔ

• Can densities & cross-section rise 
forever? 

• Black disk limit: σtotal ≤ 2 π R2
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Saturation/Color Glass Condensate
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BK/JIMWLK 

DGLAP 

BFKL 

ln Λ2
QCD

αs << 1αs ~ 1

Terra Incognita

Non-Linear Evolution: 
• At very high energy: recombination compensates gluon splitting
• Cross sections reach unitarity limit 
• BK/JIMWLK: non-linear effects  ⇒ saturation 
‣ characterized by Qs(x,A) 
‣ Wave function is Color Glass Condensate in IMF description

In transverse plane: nucleus/
nucleon densely packed with gluons

McLerran-Venugopalan Model:
• Weak coupling description of the 

wave function 
• Gluon field Aµ~1/g ⇒ gluon fields 

are strong classical fields!
• Most gluons kT ~ QS 



Reaching the Saturation Region

Would require a new ep collider at √s ~ 1-2 TeV 
(Hera ~ 0.3 TeV) ⇒ unrealistic (at least in the US)
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ZEUS BPC 1995
ZEUS SVTX 1995
H1 SVTX 1995
HERA 1994
HERA 1993
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HERA (ep):
Despite high energy range:
• F2, Gp(x, Q2) only outside 

the saturation regime
• Regime where non-linear 

QCD matters (Q < Qs) not 
reached (is it close?)

• Need also large Q2 range 
• Only way in ep is to 

increase √s

Q2 = s x y
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Scattering of electrons off nuclei: 
Probes interact over distances L ~ (2mN x)-1

For L > 2 RA ~ A1/3 probe cannot distinguish between nucleons in front 
or back of nucleon ⇒ probe interacts coherently with all nucleons

Raison d'être for e+A

“Expected”
Nuclear Enhancement Factor
(Pocket Formula):

Enhancement of QS with A ⇒ non-linear 
QCD regime reached at significantly 
lower energy in A than in proton
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Kowalski and Teaney  
Phys.Rev.D68:114005,2003
Kowalski, Lappi 
and Venugopalan, 
PRL 100, 022303 
(2008)); Armesto et 
al., PRL 94:022002; 
Kowalski, Teaney, 
PRD 68:114005)
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Scattering of electrons off nuclei: 
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• EIC Strong hints of saturation from RHIC: x ~ 10-3 in Au 
‣ √s ~ 100 GeV: Ee = 5-30 GeV, EA = 50 -130 GeV
‣ L(EIC) > 100 × L(HERA)



Primary new 
science 

deliverables

What we 
hope to 

fundamentally 
learn

Basic 
measurements

Typical 
required 
precision

Special 
requirements 

on 
accelerator/

detector

What can be 
done in phase 

I

Alternatives in 
absence of an 

EIC

Gain/Loss 
compared 
with other 
relevant 
facilities

Comments

integrated 
nuclear gluon 
distribution

The nuclear 
wave function 
throughout  
x-Q2 plane

FL, F2, FLc, F2c

What HERA 
reached for 

F2 with 
combined 

data

displaced 
vertex 

detector for 
charm

stage 1: large-
x & large-Q2

need full EIC, 
for FL and F2

c

p+A at LHC
(not as
precise 

though) & 
LHeC

First 
experiment 
with good x, 
Q2 & A range

This is 
fundamental 

input for A+A 
collisions

kT 
dependence 

of gluon 
distribution 

and 
correlations

The non-
linear QCD 

evolution - Qs

SIDIS & di-
hadron 

correlations 
with light and 
heavy flavors

Need low-pt 
particle ID

SIDIS for sure
TBD: 

saturation 
signal in di-
hadron pT 
imbalance

1) p+A at 
RHIC/LHC, 

although e+A 
needed to 

check 
univerality
2) LheC

Cleaner than 
p+A: reduced 
background

b dependence 
of gluon 

distribution 
and 

correlations

Interplay 
between 
small-x 

evolution and 
confinement

Diffractive VM 
production and 

DVCS, 
coherent and 
incoherent 

parts

50 MeV 
resolution 

on 
momentum 

transfer

hermetic 
detector with 
4pi coverage
low-t: need to 
detect nuclear 

break-up

Moderate x 
with light and 
heavy nuclei

LHeC
Never been 
measured 

before

Initial 
conditions for 
HI collisions – 
eccentricity 
fluctuations

e+A Science Matrix & Golden Measurements
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e+A Science Matrix & Golden Measurements
• Nuclear gluons at small-x

‣ Inclusive structure functions (F2, FL, F2c, FLc) 
‣Di-hadrons (and di-jet) imbalance 
‣ Exclusive diffractive production (J/ψ, ϕ, ρ and DVCS)

๏ coherent & incoherent

• Nuclear gluons at larger-x
‣Gluon anti-shadowing / EMC effect

• Jets and hadronization
‣Use nuclei to test in-medium fragmentation, pQCD 

energy loss and parton showers

11

All Measurements need to be conducted in e+p for 
reference as well as with varying A



ratio =
F total
L − F leading twist

L

F total
L

Example 1: FL Structure Function
FL (x,Q2) ~ xG(x,Q2)

12

J. Bartels, K. Golec-Biernat 
and L. Motyka, 2011

e+p
Momentum distribution of glue



ratio =
F total
L − F leading twist

L

F total
L

Example 1: FL Structure Function
FL (x,Q2) ~ xG(x,Q2)

12

J. Bartels, K. Golec-Biernat 
and L. Motyka, 2011

e+Au
Momentum distribution of glue



Example 2: Dihadron Correlations
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Di-hadron correlations in e+A 

Dominguez, Xiao and Yuan (2010) 
at small x, multi-gluon distributions 
are as important as single-gluon 
distributions, they contribute to 

such di-hadron correlations 

never been measured, we expect to see the same effect in e+A vs e+p 

Q2 = 4 GeV22 < pT1 < 3 GeV
1 < pT2 < 2 GeV

At small x, multi-gluon distributions are as important as 
single-gluon distributions, they contribute to such di-hadron 
correlations

Q2 q

q

e

A

jet-­1

jet-­2

Either Jets or use leading 
hadrons from jets (dihadrons)

p

Au

Au x 18.5

Excellent saturation signature:

φ

beam view



Example 3: Diffractive Events
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e

W2

t

X  (MX)

q

or 

*(Q2)

Largest rapidity 
gap in event

breakup of A

xIP

Y  (MY)

dσ/dt is Fourier 
Transform of 
ρglue(b)

“Gluonic Form 
Factor”
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sum
e + A → e’ + J/ψ + A’

• Diffractive cross-section σdiff/
σtot in e+A  predicted to be 
~25-40%

• Process most sensitive to xG
(x,Q2)

• Rich physics program on 
momentum & spatial gluon 
distribution



Experimental Aspects of e+A
• Multiplicity is low
‣ Nch(ep) ~ Nch (eA) < Nch(pp)

• Cross-section is small
‣ σ(ep): 0.030 – 0.060 mb
‣ σ(pp) ~ 1000 x σ(ep):

• Moderate interaction rate
‣ 300-600 kHz for              1034 

cm-2 s-1 = 107 mb-1 s-1

15

Experimental requirements (acceptance, resolution, granularity) 
are identical to those in e+p with 2 exceptions due to:
1. Radiative corrections
2. Detecting nuclear breakup (incoherent vs. coherent diffraction)



Issue for e+A: Radiative corrections
Emission of real photons

• experimentally often not distinguished from non-radiative 
processes: soft photons, collinear photons

⇒ ”radiative corrections”

16

1 Radiative Corrections

Hubert Spiesberger 1, Elke-Caroline Aschenauer 2

1 Institute of Physics, University of Mainz, Germany
2 BNL, USA

The radiation of real and virtual photons leads to large additional contributions to the
observable cross section of electron scattering at high energies. Precision measurements
of the nucleon structure require a good control of these radiative corrections. For neutral-
current lepton nucleon scattering, a gauge-invariant classification into leptonic, hadronic and
interference contributions can be obtained from Feynman diagrams. The Feynman diagrams
for leptonic corrections are shown in figure 1. Leptonic corrections are dominating and they
strongly affect the experimental determination of kinematic variables.

Usually, the cross section is measured as a function of

Q2 = −(l − l′)2, xB =
Q2

2P · (l − l′)
, (1)

where l, l′ denote the 4-momenta of the incom-
ing and outgoing lepton, resp., and P is the 4-
momentum of the incoming nucleon. The true values
of these variables seen by the nucleon when a photon
with 4-momentum k is radiated are, however, given
by (see figure)

Q̃2 = −(l − l′ − k)2, x̃B =
Q̃2

2P · (l − l′ − k)
. (2)

If the photon momentum is large and balancing the
transverse momentum of the scattered lepton, Q̃2

can be shifted to small values, leading to an en-
hancement of the radiative corrections. This effect
is similar to the radiative tail of a resonance.

Kinematics of leptonic radiation

The effect of radiation of photons off the lepton can be described with the help of
radiator functions R̃i(l, l′, k). There is one R̃i for every structure function Fi, i = 2, L. The
radiator functions comprise both real radiation from the initial and the final state as well
as the contribution from vertex and self-energy diagrams. Using x̃B, Q̃2 from equations (2)
to parametrize the integration over the phase space for emitted photons, one can express

Figure 1: Feynman diagrams for leptonic radiation in lepton-quark scattering.
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“Ideal” case:

True case:



Effect of radiative corrections
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Distortion of observed structure function:

Radiator functions Ri(l, l′, k)
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Dealing with radiative corrections
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Method 1
• simple kinematic cuts in W 

reduce corrections slightly
• not very effective

Method 2
• reconstruct x, Q2 via hadronic final state
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5.4.1 The electron method

This method relies on measurement of the outgoing electron—its energy, E ′
e, and polar

angle, θe. Having such an information one can easily calculate Q2, x, and y:

Q2 = 2EeE
′
e(1 + cos θe), (5.8)

y = 1 − E ′
e

2Ee
(1 − cos θe), (5.9)

x =
Q2

sy
. (5.10)

The Q2 reconstruction with the electron method is precise, however W is poorly recon-
structed at low W values since a small error in the measurement of θe or E ′

e leads to a
large migrations in the reconstructed kinematic variables (see Fig. 5.9). In addition this
method is affected by QED radiation.

5.4.2 The Jacquet-Blondel method

The kinematic reconstruction method developed by Jacquet and Blondel [87] relies entirely
on the hadronic system. It is based on the assumption that the total transverse momentum
carried by the hadrons which escape detection through the beam hole in the proton
direction, as well as the energy carried by the particles escaping through the beam hole
in the electron direction can be neglected. This method is based on the quantities:

δhad =
#hadrons∑

i

Ei(1 − cos θi) = Ehad − pz had (5.11)

and

p2
t had =

(
#hadrons∑

i

px i

)2

+

(
#hadrons∑

i

py i

)2

= p2
x had + p2

y had, (5.12)

where the sums run over all final state hadrons. In practice the final-state hadrons are
represented by tracks or calorimeter energy deposits.

In the Jacquet-Blondel method the kinematic variables are obtained with the following
formulas:

y =
δhad

2Ee
, (5.13)

Q2 =
p2

t had

1 − y
, (5.14)

x =
Q2

sy
. (5.15)
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While the resolution of W at low values is superior to the electron method, the Q2

reconstruction is poor.

5.4.3 The double angle method

The double angle method of kinematic variables reconstruction takes into account both,
the scattered electron and the hadronic final state system [88] and makes use of their polar
angles only. The measurement of these angles is often less affected by detector effects
and resolution than measurements of energy. This method is to a good approximation
independent of the energy scale of the detector. However, it is sensitive to QED radiation.

For the hadronic system, described by the energy Ehad, the transverse momentum
pt had, and the z-component of momentum pz had, one can define the γh angle:

cos γh =
p2

t had − δ2
had

p2
t had + δ2

had

. (5.16)

In the naive quark parton model the γh angle is interpreted as the polar angle of the
struck quark. The kinematic variables are then calculated with the relations:

Q2 = 4E2
e

sin γh(1 + cos θe)

sin γh + sin θe − sin(θe + γh)
, (5.17)

y =
sin θe(1 − cos γh)

sin γh + sin θe − sin(θe + γh)
, (5.18)

x =
Ee

Ep

sin γh + sin θe + sin(θe + γh)

sin γh + sin θe − sin(θe + γh)
. (5.19)

5.4.4 Weighted reconstruction method

The variables Q2 and W were reconstructed using the following combination of the electron
and double angle methods (so-called weighted method) [88]:

f = min

(
1,

(
E ′

e

25

)2
)

, (5.20)

Ww = (1 − f) · Wel + f · WDA, (5.21)

Q2
w = (1 − f) · Q2

el + f · Q2
DA,

where E ′
e is given in GeV. This procedure improves the kinematic reconstruction, es-

pecially in the regions close to the kinematic space limits. It provides a satisfactory
resolution over the entire phase space used in this analysis and therefore was applied
here. The electron, double angle, and weighted reconstruction methods are compared in
Figs. 5.10 and 5.11. Figures show the profile plots with the relative differences between
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Problem in e+A: parton/hadron energy-loss, secondary particle    
                             production (typical at low-pT)



DIS: Where Goes What at Which x, Q2
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Summary (e+A)
The e+A program at an EIC is unprecedented, allowing the 
study of  matter in a new regime where physics is not described 
by “ordinary”  QCD
•  Explore the Physics of Strong Color Fields

‣Measure properties (momentum & space-time) of glue
‣ Explore non-linear QCD
‣ Existence of universal saturation regime ?

• Understand how fast partons interact as they traverse nuclear 
matter & new insight into fragmentation processes 

• Clarify the nature of Pomerons

Machine requirements: low-x reach with enough Q2 lever arm 
                                      ⇒ large √s (needs stage 2 energies)
Detector requirements: as in e+p with exception of forward region 
                                      for detection of break-up of nuclei 

20
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Saturation Seen from Different Frames
Rest frame of nucleon/nucleus:
• qq dipole (Muller dipole)

•   DGLAP: σqq ∝ r2 αs(µ2) xG(x,µ2)
‣ explodes with r2

‣ violates unitarity

22
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Rest frame of nucleon/nucleus:
• qq dipole (Muller dipole)

•   DGLAP: σqq ∝ r2 αs(µ2) xG(x,µ2)
‣ explodes with r2
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Dipole  Radius  

qq

dilute
linear-­
regime

saturation
non-­linear-­regime

Q2s
1
r 2

•   Saturation:  σqq ∝ 1-exp(-r2 αs(µ2) xG(x,µ2))



Saturation Seen from Different Frames
Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows

23

proton

N partons new partons emitted as energy increases
could be emitted off any of the N partons

BFKL:



Saturation Seen from Different Frames
Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows

23

proton

N partons any 2 partons can recombine into one

• BK (non-linear): recombination of gluons ⇒ gluon density tamed

• At Qs:   gluon emission balanced by recombination

BFKL: BK adds:



Strong Hints from RHIC: Saturation at x=10-3?
Disappearance of angular correlations in Run 8 dAu data 
at forward rapidities (log x ~ 2.5 - 3)

24

pp

Low gluon density (pp):
pQCD predicts 2→2 process 
⇒ back-to-back di-jet

beam view

q q-jet

g-jet
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dAu dAuperipheral central

High gluon density (pA):
2→1 (2→many) process ⇒ mono-jet

pT balanced by 
many gluons
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• Strong hints of saturation from 
RHIC: x ~ 10-3 in Au

• ep: No/weak hints in DIS at Hera 
up to x=6.32⋅10-5, Q2=1-5 GeV2
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Are RHIC & HERA Results consistent?
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• Strong hints of saturation from 
RHIC: x ~ 10-3 in Au

• ep: No/weak hints in DIS at Hera 
up to x=6.32⋅10-5, Q2=1-5 GeV2

• Finding RHIC and Hera & Qs 
scalings consistent

• At pA in RHIC we see the Nuclear 
“Oomph”  Qs2 ~ Q02 (A/x)1/3
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happens here



Do EIC energies match the requirements?

26

eRHIC = RHIC + 
Energy-Recovery Linac

ELIC = CEBAF + 
Hadron Ring

Both 
designs in 
2 stages

1. stage: 5+100 GeV/n e+Au 
(√s=45 GeV/n)

2. stage: 30+130 GeV/n e+Au 
(√s=125 GeV/n)

1. stage: 11+40 GeV/n e+Au 
(√s=42 GeV/n)

2. stage: 20+100 GeV/n e+Au 
(√s=89 GeV/n)

see talk by Vladimir Litvinenko see talk by Vasiliy Morozov
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• In both cases 1st stage is ~OK but offers 
little Q2 lever arm

• 2nd stage will match requirements fully
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Getting a “Feel” for Non-Linear QCD

27

Dipole Scattering Amplitude

1    saturated, non-linear regime
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Measuring FL with the EIC

Coverage in x and Q2 for inclusive 
cross section measurements

In order to extract FL one needs at 
least two measurements of the 
inclusive cross section with “wide” span 
in inelasticity parameter y  (Q2 = sxy)
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FL ~ αs G(x,Q2) : the most “direct” way to G(x,Q2)
FL runs at various √s 
⇒ longer program

y=0.95

y=0.1

y=0.01

What y range can be achieved?



Feasibility study: σr = F2(x,Q2) - y2/Y+ ⋅FL(x,Q2)
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E. Aschenauer

Strategies:
slope of y2/Y+ for 
different s at fixed 
x & Q2

e+p:  1st stage
5x50 - 5x325
running combined
4 weeks/each
(50% eff)

stat. error shown
and negligible

To Do:
Rosenbluth 
extraction & 
Detector effects

Y+ = 1 + (1− y)2



Syst. Uncertainties in FL for staged EIC 
FL for electron energy fixed at 4 GeV and proton energies: 
50, 70, 100, 250 GeV (4 fb-1 each)
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The magenta curves show 
the statistical and systematic 
errors (1% uncertainty in 
normalization) added in 
quadrature.

Again, the extraction of 
FL is dominated by 
systematic uncertainties



Big issue for e+A: Radiative corrections
High precision requires knowledge of higher-order 
corrections

σexperiment ⇔ σtheory[Fn(x,Q2)]= σ(0) + αemσ(1) + ...
Emission of real photons

• experimentally often not distinguished from non-radiative 
processes: soft photons, collinear photons

⇒ ”radiative corrections”
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1 Radiative Corrections

Hubert Spiesberger 1, Elke-Caroline Aschenauer 2

1 Institute of Physics, University of Mainz, Germany
2 BNL, USA

The radiation of real and virtual photons leads to large additional contributions to the
observable cross section of electron scattering at high energies. Precision measurements
of the nucleon structure require a good control of these radiative corrections. For neutral-
current lepton nucleon scattering, a gauge-invariant classification into leptonic, hadronic and
interference contributions can be obtained from Feynman diagrams. The Feynman diagrams
for leptonic corrections are shown in figure 1. Leptonic corrections are dominating and they
strongly affect the experimental determination of kinematic variables.

Usually, the cross section is measured as a function of

Q2 = −(l − l′)2, xB =
Q2

2P · (l − l′)
, (1)

where l, l′ denote the 4-momenta of the incom-
ing and outgoing lepton, resp., and P is the 4-
momentum of the incoming nucleon. The true values
of these variables seen by the nucleon when a photon
with 4-momentum k is radiated are, however, given
by (see figure)

Q̃2 = −(l − l′ − k)2, x̃B =
Q̃2

2P · (l − l′ − k)
. (2)

If the photon momentum is large and balancing the
transverse momentum of the scattered lepton, Q̃2

can be shifted to small values, leading to an en-
hancement of the radiative corrections. This effect
is similar to the radiative tail of a resonance.

Kinematics of leptonic radiation

The effect of radiation of photons off the lepton can be described with the help of
radiator functions R̃i(l, l′, k). There is one R̃i for every structure function Fi, i = 2, L. The
radiator functions comprise both real radiation from the initial and the final state as well
as the contribution from vertex and self-energy diagrams. Using x̃B, Q̃2 from equations (2)
to parametrize the integration over the phase space for emitted photons, one can express

Figure 1: Feynman diagrams for leptonic radiation in lepton-quark scattering.
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“Ideal” case:

True case:



Detecting Nuclear Breakup
• Detecting all fragments pA’ = ∑pn + ∑pp + ∑pd + ∑pα ... not 

possible
• Focus on n emission
‣ Zero-Degree Calorimeter
‣ Requires careful design of IR
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Traditional modeling done in pA:
Intra-Nuclear Cascade

• Particle production
• Remnant Nucleus (A, Z, E*, ...) 
• ISABEL, INCL4

De-Excitation
• Evaporation
• Fission
• Residual Nuclei
• Gemini++, SMM, ABLA  (all no γ)

• Additional measurements:
‣ Fragments via Roman Pots
‣ γ via EMC



Experimental Reality
Here eRHIC IR layout:

Need ±X mrad opening
through triplet for n and
room for ZDC

Big questions:
• Excitation energy E*?
• ep:   dσ/MY ~ 1/MY2

• eA? Assume ep and use E*  = MY - mp  as lower limit
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Breakup simulators SMM & Gemini++ show it works:

• For E*tot ≥ 10 MeV and 2.5 mrad n acceptance we have rejection 
power of at least 105.

• Separating incoherent from coherent diffractive events is possible 
at a collider with n-detection via ZDCs alone


